Other Addictions

Risk factors

There are a range of genetic and environmental risk factors for developing an addiction that vary across the population. Roughly half of an individual's risk for developing an addiction is derived from genetics, while the other half is derived from the environment.1 However, even in individuals with a relatively low genetic loading, exposure to sufficiently high doses of an addictive drug for a long period of time (e.g., weeks–months) can result in an addiction.1 In other words, anyone can become an addict under the right circumstances.

Age

Adolescence represents a period of unique vulnerability for developing addiction. Not only are adolescents more likely to initiate and maintain drug use, but once addicted are they more resistant to treatment and more liable to relapse. Statistics have shown that those who start to drink alcohol at a younger age are more likely to become dependent later on. About 33% of the population tasted their first alcohol between the ages of 15 and 17, while 18% experienced it prior to this. As for alcohol abuse or dependence, the numbers start off high with those who first drank before they were 12 and then drop off after that. For example, 16% of alcoholics began drinking prior to turning 12 years old, while only 9% first touched alcohol between 15 and 17. This percentage is even lower, at 2.6%, for those who first started the habit after they were 21.

Genetic factors

It has long been established that genetic factors along with social and psychological factors are contributors to addiction. A common theory along these lines is the self-medication hypothesis. Epidemiological studies estimate that genetic factors account for 40–60% of the risk factors for alcoholism. Similar rates of heritability for other types of drug addiction have been indicated by other studies. Knestler hypothesized in 1964 that a gene or group of genes might contribute to predisposition to addiction in several ways. For example, altered levels of a normal protein due to environmental factors could then change the structure or functioning of specific brain neurons during development. These altered brain neurons could change the susceptibility of an individual to an initial drug use experience. In support of this hypothesis, animal studies have shown that environmental factors such as stress can affect an animal's genotype.

Overall, the data implicating specific genes in the development of drug addiction is mixed for most genes. One reason for this may be that the case is due to a focus of current research on common variants. Many addiction studies focus on common variants with an allele frequency of greater than 5% in the general population, however when associated with disease, these only confer a small amount of additional risk with an odds ratio of 1.1–1.3 percent. On the other hand, the rare variant hypothesis states that genes with low frequencies in the population ( <1 % ) confer much greater additional risk in the development of disease.

Genome-wide association studies (GWAS) are a recently developed research method which are used to examine genetic associations with dependence, addiction, and drug use. These studies employ an unbiased approach to finding genetic associations with specific phenotypes and give equal weight to all regions of DNA, including those with no ostensible relationship to drug metabolism or response. These studies rarely identify genes from proteins previously described via animal knockout models and candidate gene analysis. Instead, large percentages of genes involved in processes such as cell adhesion are commonly identified. This is not to say that previous findings, or the GWAS findings, are erroneous. The important effects of endophenotypes are typically not capable of being captured by these methods. Furthermore, genes identified in GWAS for drug addiction may be involved either in adjusting brain behavior prior to drug experiences, subsequent to them, or both.

Environmental factors

Adverse childhood experiences (ACEs) are various forms of maltreatment and household dysfunction experienced in childhood. The Adverse Childhood Experiences Study by the Centers for Disease Control and Prevention has shown a strong dose–response relationship between ACEs and numerous health, social, and behavioral problems throughout a person's lifespan, including those associated with substance abuse.35 Children's neurological development can be disrupted when they are chronically exposed to stressful events such as physical, emotional, or sexual abuse, physical or emotional neglect, witnessing violence in the household, or a parent being incarcerated or suffering from a mental illness. As a result, the child's cognitive functioning or ability to cope with negative or disruptive emotions may be impaired. Over time, the child may adopt substance use as a coping mechanism, particularly during adolescence. The National Institute on Drug Abuse cites lack of parental supervision, the prevalence of peer substance use, drug availability, and poverty as risk factors for substance use development.

Psychological factors

Individuals with comorbid (i.e., co-occurring) mental health disorders such as depression, anxiety, attention-deficit/hyperactivity disorder (ADHD) or post-traumatic stress disorder are more likely to develop substance use disorders.

The National Institute on Drug Abuse cites early aggressive behavior as a risk factor for substance use development.

Transgenerational epigenetic inheritance

See also: Transgenerational epigenetic inheritance

Epigenetic genes and their products (e.g., proteins) are the key components through which environmental influences can affect the genes of an individual; they also serve as the mechanism responsible for the transgenerational epigenetic inheritance of behavioral phenotypes, a phenomenon in which environmental influences on the genes of a parent can affect the associated traits and behavioral phenotypes of their offspring (e.g., behavioral responses to certain environmental stimuli). In addiction, epigenetic mechanisms play a central role in the pathophysiology of the disease;1 it has been noted that some of the alterations to the epigenome which arise through chronic exposure to addictive stimuli during an addiction can be transmitted across generations, in turn affecting the behavior of one's children (e.g., the child's behavioral responses to addictive drugs and natural rewards). More research is needed to determine the specific epigenetic mechanisms and the nature of heritable behavioral phenotypes that arise from addictions in humans.2740 Based upon preclinical evidence with lab animals, the addiction-related behavioral phenotypes that are transmitted across generations may serve to increase or decrease the child's risk of developing an addiction.

Mechanisms

showTranscription factor glossary

Signaling cascade in the nucleus accumbens that results in psychostimulant addiction V • T • E

Current models of addiction from chronic addictive drug use involve alterations in gene expression in the mesocorticolimbic projection. The most important transcription factors that produce these alterations are ΔFosB, cAMP response element binding protein (CREB), and nuclear factor kappa B (NF-κB). Δ FosB is the most significant gene transcription factor in addiction since its viral or genetic overexpression in the nucleus accumbens is necessary and sufficient for most of the behaviors and neural adaptations seen in drug addiction. ΔFosB expression in nucleus accumbens D1-type medium spiny neurons directly and positively regulates drug self-administration and reward sensitization through positive reinforcement while decreasing sensitivity to aversion. Specific drug addictions in which ΔFosB has been implicated in addictions to alcohol, amphetamine, cannabinoids, cocaine, methylphenidate, nicotine, phenylcyclidine, propofol, opiates, and substituted amphetamines, among others. ΔJunD (a transcription factor) and G9a (an epigenetic enzyme) directly oppose ΔFosB's expression and function. Increases in nucleus accumbens ΔJunD or G9a expression using viral vectors can reduce or, with a large increase, even block and reverse many of the neural and behavioral alterations seen in chronic drug abuse (i.e., the alterations mediated by ΔFosB).

ΔFosB also plays an important role in regulating behavioral responses to natural rewards, such as palatable food, sex, and exercise. Natural rewards, like drugs of abuse, induce gene expression of ΔFosB in the nucleus accumbens, and chronic acquisition of these rewards can result in a similar pathological addictive state through ΔFosB overexpression. Consequently, ΔFosB is the key transcription factor involved in addictions to natural rewards (i.e., behavioral addictions) as well;131152 in particular, ΔFosB in the nucleus accumbens is critical for the reinforcing effects of sexual reward.

Research on the interaction between natural and drug rewards suggests that dopaminergic psychostimulants (e.g., amphetamine) and sexual behavior act on similar biomolecular mechanisms to induce ΔFosB in the nucleus accumbens and possess bidirectional cross-sensitization effects that are mediated through ΔFosB. This phenomenon is notable since, in humans, a dopamine dysregulation syndrome, characterized by drug-induced compulsive engagement in natural rewards (specifically, sexual activity, shopping, and gambling), has also been observed in some individuals taking dopaminergic medications. ΔFosB inhibitors (drugs or treatments that oppose its action) may be an effective treatment for addiction and addictive disorders.

The release of dopamine in the nucleus accumbens plays a role in the reinforcing qualities of many forms of stimuli, including naturally reinforcing stimuli like palatable food and sex. Altered dopamine neurotransmission is frequently observed following the development of an addictive state. In humans and lab animals that have developed an addiction, alterations in dopamine or opioid neurotransmission in the nucleus accumbens and other parts of the striatum are evident. Studies have found that use of certain drugs (e.g., cocaine) affect cholinergic neurons that innervate the reward system, in turn affecting dopamine signaling in this region.

Summary of addiction-related plasticity

Top: this depicts the initial effects of high dose exposure to an addictive drug on gene expression in the nucleus accumbens for various genes in the Fos family.

Bottom: this illustrates the progressive increase in ΔFosB expression in the nucleus accumbens following repeated twice daily drug binges, where these phosphorylated (35–37 kD) ΔFosB isoforms persist in the D1-type medium spiny neurons of the nucleus accumbens for up to 2 months.

Understanding the pathways in which drugs act and how drugs can alter those pathways is key when examining the biological basis of drug addiction. The reward pathway, known as the mesolimbic pathway, or its extension, the mesocorticolimbic pathway, is characterized by the interaction of several areas of the brain.

  • The projections from the ventral tegmental area (VTA) are a network of dopaminergicneurons with co-localized postsynaptic glutamate receptors (AMPAR and NMDAR). These cells respond when stimuli indicative of a reward are present. The VTA supports learning and sensitization development and releases DA into the forebrain. These neurons also project and release DA into the nucleus accumbens, through the mesolimbic pathway. Virtually all drugs causing drug addiction increase the dopamine release in the mesolimbic pathway, in addition to their specific effects.
  • The nucleus accumbens (NAcc) is one output of the VTA projections. The nucleus accumbens itself consists mainly of GABAergic medium spiny neurons (MSNs). The NAcc is associated with acquiring and eliciting conditioned behaviors, and is involved in the increased sensitivity to drugs as addiction progresses. Overexpression of ΔFosB in the nucleus accumbens is a necessary common factor in essentially all known forms of addiction; ΔFosB is a strong positive modulator of positively reinforced behaviors.
  • The prefrontal cortex, including the anterior cingulate and orbitofrontal cortices, is another VTA output in the mesocorticolimbic pathway; it is important for the integration of information which helps determine whether a behavior will be elicited. It is also critical for forming associations between the rewarding experience of drug use and cues in the environment. Importantly, these cues are strong mediators of drug-seeking behavior and can trigger relapse even after months or years of abstinence.

Other brain structures that are involved in addiction include:

  • The basolateral amygdala projects into the NAcc and is thought to also be important for motivation.
  • The hippocampus is involved in drug addiction, because of its role in learning and memory. Much of this evidence stems from investigations showing that manipulating cells in the hippocampus alters dopamine levels in NAcc and firing rates of VTA dopaminergic cells.

Role of dopamine and glutamate

Dopamine is the primary neurotransmitter of the reward system in the brain. It plays a role in regulating movement, emotion, cognition, motivation, and feelings of pleasure. Natural rewards, like eating, as well as recreational drug use cause a release of dopamine, and are associated with the reinforcing nature of these stimuli. Nearly all addictive drugs, directly or indirectly, act upon the brain's reward system by heightening dopaminergic activity.

Excessive intake of many types of addictive drugs results in repeated release of high amounts of dopamine, which in turn affects the reward pathway directly through heightened dopamine receptor activation. Prolonged and abnormally high levels of dopamine in the synaptic cleft can induce receptor downregulation in the neural pathway. Downregulation of mesolimbic dopamine receptors can result in a decrease in the sensitivity to natural reinforcers.

Drug seeking behavior is induced by glutamatergic projections from the prefrontal cortex to the nucleus accumbens. This idea is supported with data from experiments showing that drug seeking behavior can be prevented following the inhibition of AMPA glutamate receptors and glutamate release in the nucleus accumbens.